

Multi-Species, Multi-Spectral, Multi-Satellite retrievals of trace gases

<u>Vivienne Payne¹</u>, Dejian Fu¹, Susan Kulawik², Kevin Bowman¹, Kazuyuki Miyazaki³

With special thanks to:

Helen Worden⁴, Karen Cady-Pereira⁵, Dylan Millet⁶, Kelley Wells⁶, Emily Fischer⁷, Shashan Yu¹, Jessica Neu¹, John Worden¹, Larry Flynn⁸, Yong Han⁸, Larrabee Strow⁹, Evan Fishbein¹, Bill Irion¹, Vijay Natraj¹ and to the TES, AIRS, OMI, CrIS, OMPS, TROPOMI teams

- ⁰¹ NASA Jet Propulsion Laboratory, California Institute of Technology
- ⁰² NASA Ames Research Center
- ⁰³Japan Agency for Marine-Earth Science and Technology
- ⁰⁴National Center for Atmospheric Research
- ⁰⁵Atmospheric and Environmental Research
- ⁰⁶University of Minnesota
- ⁰⁷ Colorado State University
- ⁰⁸ NOAA Center for Satellite Applications and Research, USA
- ⁰⁹ University of Maryland Baltimore County, USA

Spectral Regions Used in JPL MUSES (Multi-Spectra, Multi-Species, Multi-Sensors) Algorithm

Measurements from TIR (LW) are sensitive to the free-tropospheric trace gases. Measurements from UV-Vis-NIR (SW) are sensitive to the column abundances of trace gases. Joint LW/SW measurements can distinguish upper troposphere from lower troposphere.

Retrieval characteristics and diagnostics

JPL MUSES algorithm delivers both retrieved trace gas concentration profiles and observation operators needed for trend analysis, climate model evaluation, and data assimilation.

E.g., a data assimilation system applies an observation operator (H)

$$\mathbf{y}^{s} = \mathbf{H}(\mathbf{x}) = \mathbf{x}_{a} + \mathbf{A}(\mathbf{x}_{model} - \mathbf{x}_{a})$$

 \mathbf{y}^{s} is the model profiles; \mathbf{x}_{a} is *a priori* profiles used in the retrievals; \mathbf{A} is the averaging kernels of satellite observations.

After applying observation operator to model profiles, the satellite-model differences (\mathbf{y}^{o} - \mathbf{y}^{s}) is not biased by the *a priori* used in the retrievals.

$$\Delta y = y^{o} - y^{s} = A(x_{true} - x_{model}) + \varepsilon$$

Thermal Infrared

Trace gas products from Aura-TES

TES version 7 trace gas products

Ozone (O_3)

O₃ Instantaneous Radiative Kernels

Carbon Monoxide (CO)

Methane (CH₄)

Carbon Dioxide (CO₂)

Nitrous Oxide (N₂O)

Deuterated Water Vapor (HDO)

Carbonyl Sulfide (OCS)

Ammonia (NH₃)

Peroxyacetyl Nitrate (PAN)

Formic Acid (HCOOH)*

Methanol (CH₂OH)

* Feature is in spectral gap for S-NPP CrIS

Omnipresen

Peroxyacetyl nitrate (PAN)

- PAN plays key roles in
 - Long-range transport of ozone
 - Redistribution of nitrogen in the troposphere
- PAN is the route for NO_x to reach the remote troposphere
- PAN couples biogenic emissions to the nitrogen cycle, increasing the spatial range of NO_x
- PAN extends the air quality impacts of fires

PAN from TES

PAN from CrIS

- Opportunities offered by CrIS PAN compared to TES PAN:
 - Extension of TES record in time
 - Better signal to noise and drastically improved spatial coverage
 - New constraints on chemical models at global and regional scales

Methanol (CH₃OH)

- Methanol is the most abundant NMVOC
 - Major source of carbon monoxide and formaldehyde
 - Leads to formation of ozone and secondary organic aerosols
- Methanol has both biogenic and combustion sources
 - Resolution of biogenic from other sources remains a challenge
 - Carbon monoxide can be used as a tracer, but CO also has biogenic sources
 - Value of tracers with no biogenic sources [e.g. acetylene (C₂H₂)]
 - Previous spaceborne obs of C₂H₂ from IASI (Duflot et al. [2013])
 - CrIS has lower noise than IASI.....

Methanol residuals

Methanol feature lies within the ozone band. Ozone must be fit first.

Methanol retrievals from CrIS

Isoprene from CrIS

Isoprene:

- Biogenic VOC, emitted by plants
- Shapes tropospheric composition through impacts on ozone, aerosols, the atmosphere's oxidizing capacity and the nitrogen cycle

NASA Roses-funded activities: (Aura ST/ACMAP Program)

Isoprene retrievals from CrIS (Fu et al.)

Combine CrIS isoprene, Aura OMI (HCHO, NO₂) and the GEOS-Chem model to advance understanding of isoprene oxidation and HCHO production across NO_x regimes. (**Millet et al.**)

Multi-spectral retrievals

Multi-spectral retrievals of ozone

Multi-spectral retrievals can offer improved sensitivity to the lower troposphere

Assimilated Global Ozone Fields

- Joint AIRS/OMI ozone profiles have been assimilated into CHASER system.
- \triangleright CHASER system assimilated the OMI (NO₂), GOME-2 (NO₂) MLS (HNO₃ and O₃), MOPITT (CO) for KORUS-AQ ,recently assimilated AIRS/OMI ozone profile data

Extension to Joint CrlS/OMPS O₃ Retrievals

- MUSES has been applied to joint CrIS/OMPS ozone retrievals over Africa on October 21, 2013.
- > The elevated ozone concentrations (2-20 degree south) are associated with biomass burning.
- ➤ Joint CrIS/OMPS O₃ and CrIS CO retrievals using MUSES will support the NOAA FIREX flight campaign (NOAA CPO AC4 program)
 - Assimilation within RAQMS (R. B. Pierce)

Multispectral CO from CrIS and TROPOMI

MOPITT's unique thermal IR/near IR multispectral CO measurements, which are able to separate near-surface from the free troposphere, have no planned follow-on.

Fu et al, AMT (2016): Combining CrIS data with the Sentinel 5p TROPOMI near IR data would provide comparable vertical sensitivity to MOPITT but with daily coverage.

NASA

Summary

- Suomi-NPP and JPSS offer many exciting opportunities for advancing understanding of tropospheric composition and chemistry
- Value of multiple species for constraints on chemical models
- Value of multiple wavelength regions for vertical sensitivity
 - \triangleright Joint AIRS/OMI and CrIS/OMPS retrieved O₃ profiles can distinguish the abundances in the upper troposphere from the lower troposphere.
- Opportunities for multi-satellite retrievals to extend EOS-era data records
- Observation operators and error estimates are key to the effective utilization of the retrievals.

Backup

PAN from CrIS

TES methanol

Joint AIRS/OMI and TES observations on August 23, 2006 during TexAQS Aircraft Flight Campaign

Joint AIRS/OMI ozone retrievals

> Show best agreement to TES, in comparisons to each instrument alone

CrIS Carbon Monoxide Maps for KORUS-AQ

CrIS retrievals using JPL MUSES algorithm

- Nine times higher spatial resolution vs. the CrIS operational data products
- > Provides full observation operators (averaging kernels, uncertainty estimates, a priori profiles)
- ➤ CrIS alone will be used for extending the MOPITT TIR CO data, while combines TROPOMI measurements to extend MOPITT TIR/NIR multi-spectral CO data.

CrIS Ozone Maps for KORUS-AQ

CrIS retrievals using JPL MUSES algorithm

- Nine times higher spatial resolution vs. the CrIS operational data products
- > Provides full observation operators (averaging kernels, uncertainty estimates, a priori profiles)
- ➤ Working on combining OMPS measurements, joint CrIS/OMPS could improve the spatial coverage by a factor of three, in comparisons to joint AIRS/OMI.

Joint AIRS/OMI O₃ Retrievals

- Retrieved joint AIRS/OMI ozone
 - Three-day averaged, May 18 to 20, 2016.
 - Total ozone shows strong latitudinal dependence, dominated by stratospheric ozone.
 - Tropospheric/upper tropospheric ozone enhancement over the ocean (Korean peninsula <->
 Japan), could be the natural influences of stratosphere-troposphere exchange (STE) process.

Impacts of Joint AIRS/OMI O₃ Profiles on Data Assimilation

- > Joint AIRS/OMI ozone profiles have been assimilated into CHASER system.
- \triangleright CHASER system assimilated the OMI (NO₂), GOME-2 (NO₂), MLS (HNO₃ and O₃), MOPITT (CO) for KORUS-AQ ,recently assimilated AIRS/OMI ozone profile data

Combining CrIS, OMPS-NM and OMPS-NP

Available trace gas products from NASA/NOAA thermal-IR sounders*

	Molecule	AIRS v6	AIRS OE J. Warner et al	AIRS NUCAPS	TES v7	CrIS NUCAPS	CrIS AER/NCAR ⁺
	O ₃	Υ		Y	Υ	Υ	
	O3 IRKs				Υ		
_	со	Υ	Υ	Υ	Υ	Υ	+
	CH ₄	Υ		Υ	Υ	Υ	
	CO ₂	Υ		Υ	Υ	Υ	
	N ₂ O		Υ	Υ	Υ	Υ	
	HDO				Υ		
	HNO ₃		Υ	Y		Υ	
_	ocs	AIRS gap	AIRS gap	AIRS gap	Υ	CrIS gap	CrIS gap
20	NH ₃		Y		Y		+
	CH₃OH				Υ		
ati	нсоон	AIRS gap	AIRS gap	AIRS gap	Υ	CrIS gap	CrIS gap
	PAN				Υ		
CO	SO ₂	flag		Y		Y	
concentrations	C ₂ H ₂						
U	C ₂ H ₄						

^{*}Attempt to capture range of products avail – please excuse omissions/misunderstandings

Observable at enhanced

⁺ Not yet publicly available, but will be in forseeable future